

Mary Bishai (BNL)

Specifications

Target/Horn designs

Beamline Geometry/Material

Physics Sensitivities

Energy

Possible Beam Design Improvements

Summary and Conclusions

LBNE Physics and Beam Designs DOE Underground Science Review, SLAC 4/14/11

Mary Bishai (BNL)

April 13, 2011

- 1 Specifications
- 2 Target/Horn designs
- 3 Beamline Geometry/Material
- 4 Physics Sensitivities
- 5 Primary Beam Energy
- 6 Possible Beam Design Improvements

Requirements of the FNAL/Homestake Beam

Mary Bishai (BNL)

Specifications

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

The design specifications of a new WBLE beam based at the Fermilab MI are driven by the physics of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

L = 1300 km, Normal Hierarchy

Requirements:

- -Maximal possible neutrino fluxes to encompass the 1st and 2nd oscillation nodes, with maxima at 2.4 and 0.8 GeV.
- -High purity ν_{μ} beam with negligible $\nu_{\rm e}$

-Minimize the neutral-current feed-down contamination at lower energy, therefore minimizing the flux of neutrinos with energies greater than 5 GeV is highly desirable.

Requirements of the FNAL/Homestake Beam

Mary Bishai (BNL)

Specifications

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

The design specifications of a new WBLE beam based at the Fermilab MI are driven by the physics of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

L = 1300 km, Inverted Hierarchy

Requirements:

- -Maximal possible neutrino fluxes to encompass the 1st and 2nd oscillation nodes, with maxima at 2.4 and 0.8 GeV.
- -High purity ν_{μ} beam with negligible $\nu_{\rm e}$

-Minimize the neutral-current feed-down contamination at lower energy, therefore minimizing the flux of neutrinos with energies greater than 5 GeV is highly desirable.

LBNE Target Design

LBNE Physics and Beam Designs

Target/Horn designs

The designed LBNE target is a cylindrical segmented graphite tube. r=0.765cm, l=95cm (2 interaction lengths) long. Water cooled.

C target at 120 GeV is optimal for ν production at the 1st maximum 18

The Focusing System for LBNE

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specifications
Target/Horn

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Bean Design Improvements

Summary and Conclusions

Beamline Geometry/Material

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specifications

Target/Horn designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

Beamline Geometry/Material

LBNE Physics and Beam Designs

Beamline Geome-

try/Material

Air cooled decay pipe with radius=2m, length =

length = 200 to 250m							
D.P.	Rate	Rate Rate					
length	0-2	2-6	> 6				
m	GeV	GeV	GeV				
180	3.1	11	6.3				
280	3.5	14	8.1				
380	3.6	16	9.7				
480	3.7	17	11				
580	3.7	17	11				

Decrease DP length from 250 to 200 m

 \sim 13% decrease in rate at 1300km

He vs Air filled DP

The LBNE Beam Design for Case Studies

LBNE Physics and Beam Designs

Mary Bishai (BNL)

Specifications

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions The LBNE design selected for physics studies maximizes the ν_{e} appearance signal at 1300km.

Target: Carbon target, r=0.6cm, l=80cm, ρ = 2.1 g/cm³. Located

-30cm from Horn1.

Horns: 2 Al NuMl Horns, 6m apart, 250 kA.

Decay Pipe: r=2m, I=280m, He filled/evacuated.

Oscillation CC rates/(100 kT.MW.yr) in 0.5 < E $_{\nu}$ < 20 GeV:

u beam, $\Delta m_{31}^2 = +2.5 \times 10^{-3} {\rm eV}^2$, $\delta_{\rm cp} = 0$, $\sin^2 2\theta_{13} = 0.04$

Beam Tune	$ u_{\mu}$	$ u_{\mu}$ osc	$ u_{ m e}$ beam	$ u_{\mu} ightarrow u_{ m e}$	$ u_{\mu} ightarrow u_{ au}$
Low-Energy (LE)	29K	11K	260	560	140

LBNE Physics from WCD Case Study

Mary Bishai (BNL)

Specification

. . .

Beamline Geome-

Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Bean Design Improvements

Summary and Conclusions

Large $\nu_{\rm e}$ signal above bkgd

2 MW beam improves physics reach

Mary Bisha (BNL)

Specification:

Beamline Geome-

Geometry/Material

Sensitivities

Primary Beam Energy

Possible Bean Design Improvements

Summary an Conclusions

Impact of Primary Beam Energy

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specification

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

hierarchy

Sensitivity to Mass Hierarchy at 3σ

MI may be able to deliver 700kW from 80-120 GeV only

0.0050

0.0071

0.0100

300 kton, 2 MW

Impact of Primary Beam Energy

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specification

designs

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

Sensitivity to CPV at 3σ

MI may be able to deliver 700kW from 80-120 GeV only

Tunable Beams for More Physics

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specification

Beamline

Beamline Geometry/Material

Physics Sensitivitie

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

Different beam tunes improve sensitivity to a wide range of physics:

Oscillation CC rates/(100 kT.MW.yr) 0.5 < E $_{\nu}$ < 20 GeV:

$$\nu$$
 beam, $\Delta m_{31}^2 = +2.5 \times 10^{-3} {\rm eV}^2 \;, \delta_{\rm cp} = 0 \;, \sin^2 2\theta_{13} = 0.04$

Target position	$ u_{\mu}$	$ u_{\mu}$ osc	$ u_{ m e}$ beam	$ u_{\mu} ightarrow u_{ m e}$	$ u_{\mu} ightarrow u_{ au}$
-0.3m (1° OA)	8.0K	4.5K	120	110	37
-0.3m (LE)	29K	11K	260	560	140
-1.5m (ME)	44K	28K	320	480	640
-2.5m (HE)	47K	35K	280	340	800

Mary Bisha (BNL)

Specification

designs Beamline

Beamline Geometry/Material

Physics Sensitivities

Energy

Possible Beam Design Improvements

Summary and Conclusions

Impact of Second Maximum with Different Fluxes

$0.5 < \mathsf{E}_{ u} < 12~\mathsf{GeV}$

Mary Bisha (BNL)

Specification

designs Beamline

Beamline Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

Different Beam Fluxes Studied

Impact of the 2nd Maximum

Impact of Second Maximum with Different Fluxes

$1.25 < E_{\nu} < 12 \text{ GeV}$

Mary Bishai (BNL)

Specification

Beamline Geome-

try/Materia

Primary Bear

Possible Beam Design Improvements

Summary and Conclusions

Hybrid target design: NEW

Increases π flux at 2nd maximum by $\sim 50\%$

Decreases π flux > 20 GeV (E $_{\nu}$ > 8 GeV) by 50%

Unique Physics with Low Energy Beams?

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specifications

designs Beamline

Geometry/Material

Sensitivities

Energy Beam

Possible Beam Design Improvements

Summary and Conclusions Improves access to θ_{23} octant, exclusive measurement of ν_e appearance when $\theta_{13}=0$ and more clean flux at 2nd maximum. These beams could be generated by moving the beam focusing 1° off-axis, or with a multi-MW 5-8 GeV beam (Project X ?).

Physics impact is still being assessed.

Summary and Conclusions

LBNE Physics and Beam Designs

Mary Bisha (BNL)

Specification

Beamline

Geometry/Material

Physics Sensitivities

Primary Beam Energy

Possible Beam Design Improvements

Summary and Conclusions

- The techincal design of the LBNE beamline is very advanced and relies heavily on the experience from NuMI.
- There is still a lot of room for improvement.
 Lots of bang for few bucks in improving target/focusing designs.
- Reducing the decay pipe length reduces the flux more running time to get the same physics. An air filled decay pipe also reduces the flux further (15% at the 1st osc maximum).
- At least 2 beam tunes are needed to constrain near to far extrapolation. Tunable beams = more physics.
- Physics with low energy long baseline beams is being studied.